The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
本文着重于当前过度参数化的阴影去除模型的局限性。我们提出了一个新颖的轻型深神经网络,该网络在实验室色彩空间中处理阴影图像。提出的称为“实验室网络”的网络是由以下三个观察结果激励的:首先,实验室颜色空间可以很好地分离亮度信息和颜色属性。其次,顺序堆叠的卷积层无法完全使用来自不同接受场的特征。第三,非阴影区域是重要的先验知识,可以减少阴影和非阴影区域之间的剧烈差异。因此,我们通过涉及两个分支结构的结构来设计实验室网络:L和AB分支。因此,与阴影相关的亮度信息可以很好地处理在L分支中,而颜色属性则很好地保留在AB分支中。此外,每个分支由几个基本块,局部空间注意模块(LSA)和卷积过滤器组成。每个基本块由多个平行的扩张扩张率的扩张卷积组成,以接收不同的接收场,这些接收场具有不同的网络宽度,以节省模型参数和计算成本。然后,构建了增强的通道注意模块(ECA),以从不同的接受场聚集特征,以更好地去除阴影。最后,进一步开发了LSA模块,以充分利用非阴影区域中的先前信息来清洁阴影区域。我们在ISTD和SRD数据集上执行广泛的实验。实验结果表明,我们的实验室网络井胜过最先进的方法。同样,我们的模型参数和计算成本降低了几个数量级。我们的代码可在https://github.com/ngrxmu/lab-net上找到。
translated by 谷歌翻译
可进入的模型可以通过在表示理论和特征领域的语言中制定均衡性要求来提供非常通用和灵活的均衡性,这对许多视觉任务都是有效的。但是,由于3D旋转的数学更复杂,因此在2D情况下得出3D旋转模型要困难得多。在这项工作中,我们采用部分差分运算符(PDOS)来模型3D滤波器,并得出了通用的可检测3D CNN,称为PDO-S3DCNNS。我们证明,模棱两可的过滤器受线性约束的约束,可以在各种条件下有效地解决。据我们所知,PDO-S3DCNNS是3D旋转的最通用的CNN,因为它们涵盖了所有$ SO(3)$及其表示的所有常见子组,而现有方法只能应用于特定的组和特定组和表示。广泛的实验表明,我们的模型可以很好地保留在离散域中的均衡性,并且在SHREC'17检索和ISBI 2012分割任务上的表现都超过了以前的网络复杂性。
translated by 谷歌翻译
视频文本发现(VTS)是需要同时检测,跟踪和识别视频中文本的任务。现有的视频文本发现方法通常开发复杂的管道和多个模型,这不是实时应用程序的朋友。在这里,我们提出了一个带有对比表示学习(Cotext)的实时端到端视频文本检测器。我们的贡献分为三个:1)Cotext同时解决实时端到端可训练框架中的三个任务(例如,文本检测,跟踪,识别)。 2)通过对比度学习,Cotext模拟了多个帧的长距离依赖性和学习时间信息。 3)简单,轻巧的体系结构设计用于有效和准确的性能,包括带有蒙版ROI的基于CTC的GPU - 平行检测后处理。广泛的实验显示了我们方法的优越性。尤其是,Cotext在ICDAR2015VIDEO上以41.0 fps的速度实现了一个视频文本,以72.0%的IDF1命中,其video的范围为10.5%和32.0 fps,改进了先前的最佳方法。该代码可以在github.com/weijiawu/cotext上找到。
translated by 谷歌翻译
RNA结构的确定和预测可以促进靶向RNA的药物开发和可用的共性元素设计。但是,由于RNA的固有结构灵活性,所有三种主流结构测定方法(X射线晶体学,NMR和Cryo-EM)在解决RNA结构时会遇到挑战,这导致已解决的RNA结构的稀缺性。计算预测方法作为实验技术的补充。但是,\ textit {de从头}的方法都不基于深度学习,因为可用的结构太少。取而代之的是,他们中的大多数采用了耗时的采样策略,而且它们的性能似乎达到了高原。在这项工作中,我们开发了第一种端到端的深度学习方法E2FOLD-3D,以准确执行\ textit {de de novo} RNA结构预测。提出了几个新的组件来克服数据稀缺性,例如完全不同的端到端管道,二级结构辅助自我鉴定和参数有效的骨干配方。此类设计在独立的,非重叠的RNA拼图测试数据集上进行了验证,并达到平均sub-4 \ aa {}根平方偏差,与最先进的方法相比,它表现出了优越的性能。有趣的是,它在预测RNA复杂结构时也可以取得令人鼓舞的结果,这是先前系统无法完成的壮举。当E2FOLD-3D与实验技术耦合时,RNA结构预测场可以大大提高。
translated by 谷歌翻译
在许多收集的图像中,由于未经污染的图像对于许多下游多媒体任务至关重要,因此阴影删除引起了人们的关注。当前的方法考虑了阴影和非阴影区域的相同卷积操作,同时忽略了阴影区域和非阴影区域的颜色映射之间的巨大差距,从而导致重建图像的质量差和沉重的计算负担。为了解决这个问题,本文介绍了一个新颖的插件阴影感知动态卷积(SADC)模块,以使阴影区域与非阴影区域之间的相互依赖性解除。受到以下事实的启发:非阴影区域的颜色映射更易于学习,我们的SDC以计算上的轻巧卷积模块的方式处理非阴影区域,并以计算上的廉价方式处理,并使用更复杂的卷积模块恢复阴影区域图像重建的质量。鉴于非阴影区域通常包含更多背景颜色信息,我们进一步开发了一种新型的卷积内蒸馏损失,以增强从非阴影区域到阴影区域的信息流。在ISTD和SRD数据集上进行的广泛实验表明,我们的方法在许多最先进的情况下取得了更好的阴影去除性能。我们的代码可从https://github.com/xuyimin0926/sadc获得。
translated by 谷歌翻译
最近的视频文本发现方法通常需要三个阶段的管道,即检测单个图像中的文本,识别本地化文本,跟踪文本流以及后处理以生成最终结果。这些方法通常遵循按匹配范式跟踪并开发复杂的管道。在本文中,植根于变压器序列建模,我们提出了一个简单但有效的端到端视频文本检测,跟踪和识别框架(TransDert)。转码主要包括两个优点:1)与相邻帧中的显式匹配范式不同,transdetr轨道和不同的匹配范围,并通过长期时间序列(超过7帧)隐含的不同查询所谓的文本查询隐式识别每个文本。 2)Transdetr是第一个端到端可训练的视频文本斑点框架,该框架同时介绍了三个子任务(例如,文本检测,跟踪,识别)。进行了四个视频文本数据集(即ICDAR2013视频,ICDAR2015视频,Minetto和YouTube视频文本)中的广泛实验,以证明Transdetr在预先的性能中达到了最大的表现,并且在视频文本发现任务方面的提高约为8.0%。 。可以在https://github.com/weijiawu/transdetr上找到Transdet的代码。
translated by 谷歌翻译
促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
Coflow是最近提出的网络抽象,以帮助提高数据并行计算作业的通信性能。在多阶段作业中,每个作业包括多个Coflows,由定向的非循环图(DAG)表示。有效地调度Coflows对于提高数据中心中的数据并行计算性能至关重要。与手动调度启发式相比,现有的工作Deepweave [1]利用强化学习(RL)框架自动生成高效的CoFlow调度策略。它采用图形神经网络(GNN)来编码一组嵌入向量中的作业信息,并将包含整个作业信息的平面嵌入载体馈送到策略网络。然而,这种方法的可扩展性差,因为它无法应对由任意尺寸和形状的DAG表示的作业,这需要大型策略网络来处理难以训练的高维嵌入载体。在本文中,我们首先利用了一条定向的无循环图神经网络(DAGNN)来处理输入并提出一种新型流水线-DAGNN,其可以有效地加速DAGNN的特征提取过程。接下来,我们馈送由可调度的Coflows组成的嵌入序列,而不是将所有Coflows的平面嵌入到策略网络上,并输出优先级序列,这使得策略网络的大小仅取决于特征的维度而不是产品的维度作业的DAG中的节点数量和节点数量,提高优先级调度策略的准确性,我们将自我注意机制纳入深度RL模型,以捕获嵌入序列不同部分之间的交互,以使输出优先级进行输出优先级分数相关。基于此模型,我们开发了一种用于在线多级作业的Coflow调度算法。
translated by 谷歌翻译
目前基于学习的单图像超分辨率(SISR)算法由于假定的Daradada-Tion过程中的偏差而导致的实际数据up到实际数据。常规的劣化过程考虑在高分辨率(HR)图像上应用模糊,噪声和下采样(通常是较大的采样)以合成低分辨率(LR)对应物。然而,很少有用于退化建模的作品已经采取了光学成像系统的物理方面。在本文中,我们光学分析了成像系统,并探索了空间频域的实际LR-HR对的特征。通过考虑optiopticsandsordegration,我们制定真实的物理启发的退化模型;成像系统的物理劣化被建模为低通滤波器,其截止频率由物体距离,焦距的更焦距和图像传感器的像素尺寸。特别是,我们建议使用卷积神经网络(CNN)来学习现实世界劣化过程的截止频率。然后应用学习的网络从未配对的HR图像合成LR图像。稍后使用合成的HR-LR图像对培训SISR网络。我们评估所提出的不同成像系统捕获的现实世界图像中提出的退化模型的有效性和泛化能力。实验结果展示了通过使用传统的退化模型使用我们的合成数据训练的SISR网络通过传统的降级模型对网络进行了有利的。此外,我们的结果与通过使用现实世界LR-HR对训练的相同网络获得的结果相当,这是在真实场景中获得的具有挑战性。
translated by 谷歌翻译